
www.inductionframework.org

Induction MVC Framework
A brief introduction to release 1.3.1b/1.4.0b

(compares to release 1.1.4b)

Adinath Raveendra Raj
Acciente, LLC
Dec 11, 2009

www.inductionframework.org

What is Induction?
● Induction is a powerful, high-performance, Java MVC web application

framework

● Induction supports dynamic application reloading, type-based
dependency injection and dependency analysis between models,
views and controllers

● Induction has an extensible architecture including support for view,
controller and redirect resolvers, request interceptors, error handlers,
plug-in configuration loaders and plug-in templating engines

● Induction is compatible from JDK 1.4 to JDK 1.6 (Java 6)

● Induction is a new and compelling alternative to other web
application frameworks including Struts 2 and Spring MVC

● Induction is open-source software released under the commercial
friendly Apache License 2.0

www.inductionframework.org

Why Induction?
● It should be possible to simply recompile the changed source (using

your favorite IDE) and simply reload the respective web page.

● It should be possible to analyze the dependencies between models,
views and controllers (this helps maintain complex web applications)

● It should be easy to leverage the power of dependency injection to
wire the models, views and controllers

● It should not be cluttered by superfluous XML configuration files.

● It should be possible to decouple your web application from specific
URL mappings

● Handling file uploads should be simple to the point of being
unremarkable

www.inductionframework.org

Dynamic Reloading
● Induction does not require restarting the servlet container to

deploy most changes to models, views and controllers.
● A model, view or controller is reloaded if the respective class or

one of its dependencies have changed
● The dependencies of a class are determined by examining the

class bytecode
● Induction uses the reloading class loader in the Acciente

Commons library
● The reloading class loader is written with performance

optimization considerations

www.inductionframework.org

MVC Dependency Analysis
● The ability to analyze dependencies between models, views and

controllers reduces the cost of evolving complex applications
● Models, views and controllers are represented as Java classes

to promote this analysis using an IDE
● This also promotes the use of an IDE's refactoring tools to

when a model, view or controller is changed

www.inductionframework.org

Template Data Dependency
● The goal of this design feature is to answer the questions:

– What data does this template use?
– Where model does this data come from?

● This is achieved by mapping the data space of of a template to
a single Java bean

● Each template is required to have a single Java bean that
documents the data used in that specific template

www.inductionframework.org

Dependency Injection
● Induction uses type-based dependency injection

● Dependency injection is automatic in the following contexts:

– Constructor formal parameter list for:
● Models
● Views
● Controllers
● Interceptors

– Method formal parameter list for:
● Controllers
● Interceptors

● Requires only a declaration of the model class to Induction

● Includes environment values, e.g. javax.servlet.HttpServletResponse

www.inductionframework.org

Views
● A view class is a that implements one of the following interfaces

(based on the purpose of view):
– Template
– Image
– ImageStreamer
– Text

● A class, say C1, that implements the Template interface is
processed via one of the integrated template engines.

– When processing the template the only data passed to the
template is an instance of the class C1. C1 serves as the bean
that documents precisely what data the associated
template needs.

www.inductionframework.org

Template Views
● Template views are the most commonly used view type in most

applications
● To be considered a view a class, say LoginPage, must

implements Induction's Template interface
● When a template view is requested

– An instance of the LoginPage class is created
– The instance is handed to the template engine plug-in.
– When processing the template the only data passed to the

template is the LoginPage instance. Our LoginPage class
automatically documents precisely what data the
associated template depends on.

www.inductionframework.org

Template View Example
package demoapp.helloworld3_app;

import com.acciente.induction.view.Template;

/**
 * A HelloWorld view using a freemarker tinplate
 */
public class HelloWorldView implements Template
{
 // bean attributes
 public String getFirstName() {
 return "John Doe";
 }

 // template methods
 public String getTemplateName() {
 return "HelloWorld.ftl";
 }

 public String getMimeType() {
 return "text/html";
 }
}

www.inductionframework.org

Text View Example
package demoapp.helloworld2_app;

import com.acciente.induction.view.Text;

public class HelloWorldView implements Text
{
 public String getText()
 {
 return "Hello World, using a Text view";
 }

 public String getMimeType()
 {
 return "text/plain";
 }
}

www.inductionframework.org

Controller/View Example
package demoapp.helloworld2_app;

import com.acciente.induction.controller.Controller;

/**
 * A simple controller that uses a Text view to display hello world
 */
public class HelloWorldController implements Controller
{
 public Class handler()
 {
 // typically we would do some processing of the user input here
 // and pass some data into the view via its constructor

 return HelloWorldView.class;
 }
}

www.inductionframework.org

What's new with views?
● Major view related features came in 1.2.0b

– Direct view activation without a controller
● This means there is a new view resolver interface

– Support for managed view instantiation
● dependency injection into the view constructor

– Controllers may now return a view type
● You can do “return MyView.class”
● Previously: “return new MyView(...))”

www.inductionframework.org

Another cool feature in 1.4.0b
● Template Output Buffering

– What's the big deal?
– The buffered output is written to the response only if the

template completes with no errors
– So users will be spared the 3 page template error stack trace
– Allows a error handler to send a redirect, since nothing was

written to the response

– This uses gobs of memory, right? That's the cool part!
– Induction implements an essentially finite memory footprint

buffering scheme
– The buffering is done using buffer pools where the buffers

get reused

www.inductionframework.org

Also slated for 1.4.0b
● Automatic view-to-view injection support

– The motivation is to support building composite views
– Declaring a one view as a constructor parameter in another view

will be automatically recognized by the dependency

public CatalogPage(ProductSelectorDiv productSelectorDiv)
{
 // catalog page code
 this.productSelectorDiv = productSelectorDiv;
}

public ProductSelectorDiv getProductSelectorDiv()
{
 return this.productSelectorDiv;
}

● More built-in support for composite views (still thinking
about the design of this one)

www.inductionframework.org

Models
● Implements pure application logic, completely independent of

views and controllers (and the framework)
● Any class can be a model
● A configurable factory may be provided for each model class
● Declarative control of the lifecycle of each model class:

– Application: a model object is created for the life of the
application

– Session: a model object is created for each browser session
– Request: a model object is created for each controller invocation

www.inductionframework.org

Declaring a model class
<model-defs>

.....
<model-def>

<class>demoapp.models_app.BarModel</class>
<scope>session</scope>
<factory-class>demoapp.models_app.BarModelFactory</factory-class>
<init-on-startup>false</init-on-startup>

</model-def>
....

</model-defs>

www.inductionframework.org

Model Instantiation
● Induction support two modes of model instantiation, one mode

favors simplicity and the other provides complete control
– Method 1 - Singleton Public Constructor

● The singleton public constructor mode of model instantiation is
assumed if no factory class is defined for the model. In this mode
Induction creates the model object by calling the singleton public
constructor of the model class

– Method 2 - Model Factory
● Specifying a factory class provides the most control over model

instantiation
● A model factory does not implement any special interface, it simply

needs to have a method named createModel
● The createModel is called with parameter injection. The types

supported for parameter injection into the createModel method is
identical to that described for the singleton public constructor above

www.inductionframework.org

Model Scope
● The options for model scope are:

– Application: one instance of the model is created per instance of
the Induction dispatcher servlet

– Session: one instance of the model is created per HTTP session
– Request: one instance of the model is created per HTTP request.

This implies that a model would be created for each HTTP
request, so use this type only when the model needs to be
created and torn down for each HTTP request.

www.inductionframework.org

Model-to-Model Injection
● Model-to-model injection comes into play when you need an

instance of one model, say A, in another model, say B
● Instead of explicitly instantiating an instance of model A in

model B and managing its lifecycle, with no added
configuration, Induction's parameter injection mechanism can
be used to link the model objects

● The model objects that are linked could have different scopes.
For example, model A may be application scope and model B
may be session scope

● Induction injects an instance of one model class, say A, into the
constructor of another model class, say B, based on the
constructor's parameter list of model class B

www.inductionframework.org

Model-to-Model Inj. example
package demoapp.models_app;

public class FooModel
{
 private BarModel _oBarModel;

 public FooModel(BarModel oBarModel)
 {
 _oBarModel = oBarModel;

 System.out.println("FooModel: constructor called @time: " + System.currentTimeMillis());
 }

 public BarModel getBarModel()
 {
 return _oBarModel;
 }
}

www.inductionframework.org

Controllers
● A controller is a class which implements the Controller marker

interface (the interface does not enforce any methods)

● A model object or environment object (such as the Request,
Response or Form) is accessible in a controller by simply declaring a
parameter of the model object's type in the controller's respective
method (this is basically dependency injection)

● A controller may have a method for each distinct task that it performs

● The return value of a controller is significant

www.inductionframework.org

Controller example 1
package demoapp.helloworld1_app;

import com.acciente.induction.controller.Controller;
import com.acciente.induction.controller.Response;
import java.io.IOException;

/**
 * A very simple controller that does the customary "Hello World"
 */
public class HelloWorldController implements Controller
{
 public void handler(Response oReponse) throws IOException
 {
 oReponse.setContentType("text/plain");
 oReponse.out().println("Hello World, using a simple println()");
 }
}

www.inductionframework.org

Controller example 2a
package demoapp.helloworld2_app;

import com.acciente.induction.controller.Controller;

/**
 * A simple controller that uses a Text view to display hello world
 */
public class HelloWorldController implements Controller
{
 public HelloWorldView handler()
 {
 // typically we would do some processing of the user input here
 // and pass some data into the view via its constructor

 return new HelloWorldView();
 }
}

www.inductionframework.org

Controller example 2b
package demoapp.helloworld2_app;

import com.acciente.induction.controller.Controller;

/**
 * A simple controller that uses a Text view to display hello world
 */
public class HelloWorldController implements Controller
{
 public HelloWorldView handler()
 {
 return HelloWorldView.class;
 }
}

www.inductionframework.org

Controller example 3
/**
 * An example of a multi-action controller
 */
public class UserProfileController implements Controller
{
 /**
 * Action to open a user profile
 */
 public void open(UserProfileApp userProfileApp, Form form) throws IOException
 {
 // some sample code follows ...
 userProfileApp.open(form.getString("userId"));
 }

 /**
 * Action to save a user profile
 */
 public void save(UserProfileApp userProfileApp, Form form) throws IOException
 {
 // some sample code follows ...
 userProfileApp.setFirstName(form.getString("firstName"));
 userProfileApp.setLastName(form.getString("lastName"));
 userProfileApp.save();
 }
}

www.inductionframework.org

Resolving URLs
● View Resolvers

– A view resolver is a user provided handler that resolves a URL
request to a view class name

– View resolver were added in 1.2.0b since this version introduced
direct view activation

● Controller Resolvers

– A controller resolver is a user provided handler that resolves a
URL request to a controller class name and handler method name

● Redirect Resolvers

– A redirect resolver is a user provided handler that resolves a
redirect request issued by a controller to an complete URL

www.inductionframework.org

What's else is new with resolvers?
● Induction now ships with a built-in set of production

quality resolvers, known as the ShortURL resolvers

● The ShortURL resolvers are the most powerful resolvers of
any MVC framework we know of

– You do not need to enumerate URL mappings for each
of your views/controller

– You do not need to splatter URLs all over your code!

– You configuration is concise

– The resolvers are fast

www.inductionframework.org

The ShortURL resolvers
● It starts by auto-discovering your view and controllers
● You specify a regex that describes your class pattern
● The same regex should have a matching group that

extracts a unique key from the class name
● You specify a package root to scan
● The auto-discovery mechanism is very fast (<1s for a large

app) and memory efficient

– It can check if class is view/controller without
loading the class

www.inductionframework.org

The ShortURL resolvers
● Next you specify the URL pattern that you are going to

use
– You specify a regex that describes your URL pattern
– The same regex should have a matching group that

extracts a unique key from the URL
– This key extracted from the URL is used as an

index into the keys extracted from the classnames
● Short URL mappings with a lot of flexibility and very

little manual work...done!

www.inductionframework.org

The ShortURL resolvers
Let's look at how controllers are mapped:

<controller-mapping>

 <url-to-class-map>
 <url-pattern>/(\w+)(?:\.(\w+))?\.action</url-pattern>
 <class-packages>demoapp</class-packages>
 <class-pattern>(?:.*\.)?(\w*)Controller</class-pattern>
 </url-to-class-map>

 <default-handler-method>handler</default-handler-method>
 <ignore-handler-method-case>true</ignore-handler-method-case>

 </controller-mapping>

www.inductionframework.org

Request Interceptors
● What is a Request Interceptor?

– A request interceptor is a piece of code that gets activated
for every single HTTP request received by your application

– Interceptors are very useful when you need to perform some
common processing for every HTTP request

● Request Interceptors are new in 1.3.0b

www.inductionframework.org

Request Interceptors
● What does a Request Interceptor look like?

– A request interceptor is simply an ordinary Java class that
implements the RequestInterceptor interface

– Induction looks for the methods named:

– preResolution(…)
– postResolution(…)
– preResponse(…)
– postResponse(…)
– If it finds one or more of these methods they get called at

different points in the request processing cycle

www.inductionframework.org

Request Interceptors
● preResolution(...)

– this interceptor method is invoked PRIOR to attempting to resolve the target of the
HTTP request using the controller and view resolvers.

● postResolution(...)

– this interceptor method is invoked AFTER attempting to resolve the target of the
HTTP request using the controller and view resolvers.

● preResponse(...)

– this interceptor method called as follows:

● if the request resolved to a controller then this interceptor method is
called AFTER the controller is executed but BEFORE the view or redirect
object returned by the controller is processed.

● if the request resolved to a view then this interceptor method is called
BEFORE the view is processed.

● postResponse(...)

– this interceptor method is invoked AFTER processing a view or redirect object

www.inductionframework.org

What's in the cards?
● Pluggable IoC provider

– Guice
– Spring IoC

● Better support for composite views
● Plug-ins for other view technologies
● More built-in AJAX support

– Built-in support for JSON views
● Test compatibility Google App Engine

– Currently GAE does not support custom classloader based on
the SecureClassLoader

www.inductionframework.org

Demo / Q & A
● Time for some demos:

– HelloWorld
– Counter
– Redirect
– FileUpload
– Models

●and time to to ask questions like.....where can I download
Induction? 

